242 research outputs found

    Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection

    Get PDF
    Physicochemical properties of molecules can be linked directly to evolutionary fates of a population in a quantitative and predictive manner.Reversible- and irreversible-folding pathways must be accounted for to accurately determine in vitro kinetic parameters (KM and kcat) at temperatures or conditions in which a significant fraction of free enzyme is unfolded.In vivo population dynamics can be reproduced using in vitro physicochemical measurements within a model that imposes an activity threshold above which there is no added fitness benefit

    The OmpA-Like Protein Loa22 Is Essential for Leptospiral Virulence

    Get PDF
    Pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetic manipulations of pathogenic species. In this study, we characterized a mutant obtained by insertion of the transposon Himar1 into a gene encoding a putative lipoprotein, Loa22, which has a predicted OmpA domain based on sequence identity. The resulting mutant did not express Loa22 and was attenuated in virulence in the guinea pig and hamster models of leptospirosis, whereas the genetically complemented strain was restored in Loa22 expression and virulence. Our results show that Loa22 was expressed during host infection and exposed on the cell surface. Loa22 is therefore necessary for virulence of L. interrogans in the animal model and represents, to our knowledge, the first genetically defined virulence factor in Leptospira species

    Gene fusions and gene duplications: relevance to genomic annotation and functional analysis

    Get PDF
    BACKGROUND: Escherichia coli a model organism provides information for annotation of other genomes. Our analysis of its genome has shown that proteins encoded by fused genes need special attention. Such composite (multimodular) proteins consist of two or more components (modules) encoding distinct functions. Multimodular proteins have been found to complicate both annotation and generation of sequence similar groups. Previous work overstated the number of multimodular proteins in E. coli. This work corrects the identification of modules by including sequence information from proteins in 50 sequenced microbial genomes. RESULTS: Multimodular E. coli K-12 proteins were identified from sequence similarities between their component modules and non-fused proteins in 50 genomes and from the literature. We found 109 multimodular proteins in E. coli containing either two or three modules. Most modules had standalone sequence relatives in other genomes. The separated modules together with all the single (un-fused) proteins constitute the sum of all unimodular proteins of E. coli. Pairwise sequence relationships among all E. coli unimodular proteins generated 490 sequence similar, paralogous groups. Groups ranged in size from 92 to 2 members and had varying degrees of relatedness among their members. Some E. coli enzyme groups were compared to homologs in other bacterial genomes. CONCLUSION: The deleterious effects of multimodular proteins on annotation and on the formation of groups of paralogs are emphasized. To improve annotation results, all multimodular proteins in an organism should be detected and when known each function should be connected with its location in the sequence of the protein. When transferring functions by sequence similarity, alignment locations must be noted, particularly when alignments cover only part of the sequences, in order to enable transfer of the correct function. Separating multimodular proteins into module units makes it possible to generate protein groups related by both sequence and function, avoiding mixing of unrelated sequences. Organisms differ in sizes of groups of sequence-related proteins. A sample comparison of orthologs to selected E. coli paralogous groups correlates with known physiological and taxonomic relationships between the organisms

    Pathoadaptive mutations of Escherichia coli K1 in experimental neonatal systemic infection

    Get PDF
    Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2–6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation

    Reappraisal of Vipera aspis Venom Neurotoxicity

    Get PDF
    BACKGROUND: The variation of venom composition with geography is an important aspect of intraspecific variability in the Vipera genus, although causes of this variability remain unclear. The diversity of snake venom is important both for our understanding of venomous snake evolution and for the preparation of relevant antivenoms to treat envenomations. A geographic intraspecific variation in snake venom composition was recently reported for Vipera aspis aspis venom in France. Since 1992, cases of human envenomation after Vipera aspis aspis bites in south-east France involving unexpected neurological signs were regularly reported. The presence of genes encoding PLA(2) neurotoxins in the Vaa snake genome led us to investigate any neurological symptom associated with snake bites in other regions of France and in neighboring countries. In parallel, we used several approaches to characterize the venom PLA(2) composition of the snakes captured in the same areas. [br/] METHODOLOGY/PRINCIPAL FINDINGS: We conducted an epidemiological survey of snake bites in various regions of France. In parallel, we carried out the analysis of the genes and the transcripts encoding venom PLA(2)s. We used SELDI technology to study the diversity of PLA(2) in various venom samples. Neurological signs (mainly cranial nerve disturbances) were reported after snake bites in three regions of France: Languedoc-Roussillon, Midi-Pyrénées and Provence-Alpes-Côte d'Azur. Genomes of Vipera aspis snakes from south-east France were shown to contain ammodytoxin isoforms never described in the genome of Vipera aspis from other French regions. Surprisingly, transcripts encoding venom neurotoxic PLA(2)s were found in snakes of Massif Central region. Accordingly, SELDI analysis of PLA(2) venom composition confirmed the existence of population of neurotoxic Vipera aspis snakes in the west part of the Massif Central mountains. [br/] CONCLUSIONS/SIGNIFICANCE: The association of epidemiological studies to genetic, biochemical and immunochemical analyses of snake venoms allowed a good evaluation of the potential neurotoxicity of snake bites. A correlation was found between the expression of neurological symptoms in humans and the intensity of the cross-reaction of venoms with anti-ammodytoxin antibodies, which is correlated with the level of neurotoxin (vaspin and/or ammodytoxin) expression in the venom. The origin of the two recently identified neurotoxic snake populations is discussed according to venom PLA(2) genome and transcriptome data

    Metabolic Adaptation of Ralstonia solanacearum during Plant Infection: A Methionine Biosynthesis Case Study

    Get PDF
    MetE and MetH are two distinct enzymes that catalyze a similar biochemical reaction during the last step of methionine biosynthesis, MetH being a cobalamin-dependent enzyme whereas MetE activity is cobalamin-independent. In this work, we show that the last step of methionine synthesis in the plant pathogen Ralstonia solanacearum is under the transcriptional control of the master pathogenicity regulator HrpG. This control is exerted essentially on metE expression through the intermediate regulator MetR. Expression of metE is strongly and specifically induced in the presence of plant cells in a hrpG- and metR-dependent manner. metE and metR mutants are not auxotrophic for methionine and not affected for growth inside the plant but produce significantly reduced disease symptoms on tomato whereas disruption of metH has no impact on pathogenicity. The finding that the pathogen preferentially induces metE expression rather than metH in the presence of plant cells is indicative of a probable metabolic adaptation to physiological host conditions since this induction of metE occurs in an environment in which cobalamin, the required co-factor for MetH, is absent. It also shows that MetE and MetH are not functionally redundant and are deployed during specific stages of the bacteria lifecycle, the expression of metE and metH being controlled by multiple and distinct signals

    Dynamic Allostery in the Methionine Repressor Revealed by Force Distribution Analysis

    Get PDF
    Many fundamental cellular processes such as gene expression are tightly regulated by protein allostery. Allosteric signal propagation from the regulatory to the active site requires long-range communication, the molecular mechanism of which remains a matter of debate. A classical example for long-range allostery is the activation of the methionine repressor MetJ, a transcription factor. Binding of its co-repressor SAM increases its affinity for DNA several-fold, but has no visible conformational effect on its DNA binding interface. Our molecular dynamics simulations indicate correlated domain motions within MetJ, and quenching of these dynamics upon SAM binding entropically favors DNA binding. From monitoring conformational fluctuations alone, it is not obvious how the presence of SAM is communicated through the largely rigid core of MetJ and how SAM thereby is able to regulate MetJ dynamics. We here directly monitored the propagation of internal forces through the MetJ structure, instead of relying on conformational changes as conventionally done. Our force distribution analysis successfully revealed the molecular network for strain propagation, which connects collective domain motions through the protein core. Parts of the network are directly affected by SAM binding, giving rise to the observed quenching of fluctuations. Our results are in good agreement with experimental data. The force distribution analysis suggests itself as a valuable tool to gain insight into the molecular function of a whole class of allosteric proteins

    Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Burkholderia cepacia </it>complex (BCC) is comprised of at least seventeen Gram-negative species that cause infections in cystic fibrosis patients. Because BCC bacteria are broadly antibiotic resistant, phage therapy is currently being investigated as a possible alternative treatment for these infections. The purpose of our study was to sequence and characterize three novel BCC-specific phages: KS5 (vB_BceM-KS5 or vB_BmuZ-ATCC 17616), KS14 (vB_BceM-KS14) and KL3 (vB_BamM-KL3 or vB_BceZ-CEP511).</p> <p>Results</p> <p>KS5, KS14 and KL3 are myoviruses with the A1 morphotype. The genomes of these phages are between 32317 and 40555 base pairs in length and are predicted to encode between 44 and 52 proteins. These phages have over 50% of their proteins in common with enterobacteria phage P2 and so can be classified as members of the <it>Peduovirinae </it>subfamily and the "P2-like viruses" genus. The BCC phage proteins similar to those encoded by P2 are predominantly structural components involved in virion morphogenesis. As prophages, KS5 and KL3 integrate into an AMP nucleosidase gene and a threonine tRNA gene, respectively. Unlike other P2-like viruses, the KS14 prophage is maintained as a plasmid. The P2 <it>E+E' </it>translational frameshift site is conserved among these three phages and so they are predicted to use frameshifting for expression of two of their tail proteins. The <it>lysBC </it>genes of KS14 and KL3 are similar to those of P2, but in KS5 the organization of these genes suggests that they may have been acquired via horizontal transfer from a phage similar to λ. KS5 contains two sequence elements that are unique among these three phages: an IS<it>Bmu</it>2-like insertion sequence and a reverse transcriptase gene. KL3 encodes an EcoRII-C endonuclease/methylase pair and Vsr endonuclease that are predicted to function during the lytic cycle to cleave non-self DNA, protect the phage genome and repair methylation-induced mutations.</p> <p>Conclusions</p> <p>KS5, KS14 and KL3 are the first BCC-specific phages to be identified as P2-like. As KS14 has previously been shown to be active against <it>Burkholderia cenocepacia in vivo</it>, genomic characterization of these phages is a crucial first step in the development of these and similar phages for clinical use against the BCC.</p
    corecore